
We outline here the requirements of a 3D
game engine, illustrated by describing

a particular engine’s components. We designed the
game engine, marketed as NetImmerse, to run on PCs
with a broad range of performance levels, both with
and without 3D graphics acceleration. We have found
that a high-level programming interface need not com-

promise performance.

What’s in a game?
Writers of early 2D computer

games seemed obsessed with creat-
ing meaningful patterns on low-res-
olution screens in real time with
essentially no memory. The tight
link between game programs and
game console hardware compelled
programmers to write games in
assembly language with little or no
intervening system software. Such
was the skill and patience of these
“old-time” game writers that their
product was usually entertaining
and occasionally compelling.

Today, to write games this way
would be prohibitively expensive. Programmers now
write games in high-level languages to run on PCs with
relatively adequate memory, fast access to secondary
storage, powerful CPUs, high-resolution displays, fast
audio processors, and in many cases hardware graph-
ics acceleration. However, user expectations have out-
stripped PC performance increases, forcing developers
to add content and features while struggling to main-
tain high performance.

Figure 1 schematically outlines an interactive game’s
vital elements. The items with solid outlines are essential
to any game. As an example, consider Adventure, a suc-
cessful game of the 1970s and 1980s. All input came from
a keyboard and all output was text. Adventure consisted
of little more than game logic in the form of a state table,
minimal level data (mainly text strings), and a wrapper
hardly recognizable as an event manager—yet it was an

interesting and popular game. It is worth noting that a
game is really a story, and the game logic is its plot; all
other elements we add are just media through which we
tell the story. As such, we can regard 3D graphics, audio,
data management, dynamic behavior, and more com-
plex input devices as extras. These “extras,” however,
hog almost all of a game platform’s resources, creating an
overwhelming need to execute them efficiently.

Building efficient components from the ground up for
each game title is neither economical nor necessary.
Developers reuse components from one game to anoth-
er, so we customarily distinguish game content from the
game engine. As we define it, a game engine includes all
elements in Figure 1 that have no effect on actual con-
tent, that is, everything indicated by dashed lines plus an
event loop. In practice, most game engines are tuned to
a particular content style. For example, an engine tuned
for flight simulators may not be appropriate for games
that take place in tunnels and dungeons. We describe
an engine that can be used for varying game styles while
maintaining the efficiency of a tuned engine.

Background
Using scene management techniques to gain the

greatest performance advantage from 3D display hard-
ware has a long history, especially for visual flight sim-
ulator applications. Even early flight simulators were
fed hand-optimized data at controlled levels of detail
through just-in-time data prefetch channels to ensure
that the graphical data working set was small and that
the display hardware received only essential detail.
Libraries such as Silicon Graphics’ Performer1 eventu-
ally provided this style of scene management to work-
station applications as well.

PC games offer many examples of effective scene man-
agers. The first 3D computer games used extremely sim-
ple and heavily constrained geometry. With no hardware
or platform software support for 3D display, managing
complexity was not as important as rapidly transform-
ing and rasterizing polygons. For example, the graphics
engine used in id Software’s Doom includes a very effi-
cient rasterizer, but the game’s scene complexity is low

Lars Bishop, Dave Eberly, and Turner Whitted

Numerical Design

Mark Finch

HeadSpin Technologies

Michael Shantz

Intel

Designing a PC
Game Engine

0272-1716/98/$10.00 © 1998 IEEE

Computer Graphics in Entertainment

2 January/February 1998

Computer game engine

requirements change in

response to evolving game

platforms and demands for

reduced development costs.

We propose a 3D game

engine for varying

performance levels.

to begin with. A few general-purpose
retained-mode graphics packages
such as Criterion Software’s
RenderWare,2 Argonaut
Technologies’ BRender,3 and
Rendermorphics’ RealityLab intro-
duced scene management to PC
applications. id’s Quake4 includes
reasonably sophisticated scene man-
agement, most notably a culling
mask to indicate which parts of a
level are potentially visible to a view-
point in some other part. For poten-
tially visible areas, surrounding fixed
surfaces such as walls are rendered
first with no z-compare, and moving
or decoration elements second with z-buffering enabled.

These engines all yield remarkable real-time perfor-
mance on modest PCs with no graphics hardware.
However, the growing popularity of 3D computer games
has spurred redefinition of the PC to accommodate
them. Next-generation PCs include built-in graphics
acceleration hardware and a memory port dedicated to
graphics functions.5 While these faster platforms
promise richer games, they do not lessen the need for
effective scene management and in fact make scene
management programming more challenging by
expanding the target platform’s performance range.

Design goals
Somewhere in the back of our heads a voice tells us

that speed is what really matters in a game engine. No
matter what other design decisions we make, the result-
ing implementation must be fast. This has led us to
employ very simple techniques universally, as simple
and fast seem to go hand in hand.

However, we have some other goals in mind as well.
For our sake as well as users’, we ensure compatibility
with standard low-level interfaces for graphics and
audio. For spatialized audio, the engine is layered on
top of Intel’s RSX sound library. For drawing, the engine
provides interface layers for both Direct3D and OpenGL.
This strategy also helps us deal with target platform evo-
lution, since it forces us to abstract the low-level display
and audio functions.

We also provide a consistent, high-level application
programming interface (API) for the entire package,
largely for economic reasons. Controlling game devel-
opment costs becomes more important as game players
demand more complex content. Ideally, game develop-
ers should be able to create new titles quickly without
having to learn the low-level details of sound and graph-
ics programming.

At the extreme end, we might dispense with the API,
provide a generic game executable, and have develop-
ers add data in a prescribed format. The Doom engine
took this approach and produced a flock of level exten-
sions to the original game, but they all look and play like
Doom. This may prove reasonable for future titles and
resembles loading virtual reality modeling language
(VRML) files into a generic player for distributed appli-
cations,6 but it does not currently provide the rich game

design possibilities nor the degree of optimization need-
ed for most new 3D titles. More recently, Java in VRML
and a specialized language, Quake-C, for the Quake
engine7 have extended object behavior in games.

We took a more moderate approach by providing a
common API to engine elements along with radically
optimized implementations under the hood. This
approach is more in the spirit of the SGI OpenInventor
graphics package than that of a monolithic game engine.
Some of the engine’s novel “structural” features let game
developers optimize for content in how they organize
data and how the engine elements are invoked. Finally,
the engine’s object-oriented construction facilitates
extension of the engine itself via subclassing. We detail
these features below.

Scene management
We first discuss how our object-oriented, 3D com-

mercial application engine incorporates scene manage-
ment features in a novel fashion. The API for this library
is high-level8,9 but provides exceptionally fast execution.

Central to the graphical database is a tree-structured
scene graph, common to traditional retained-mode
graphics packages. (In fact, because the engine allows
instancing, the scene graph is actually a directed acyclic
graph (DAG), but we simplify most discussions of tra-
versal by thinking of it as a tree.) The scene graph struc-
ture is not unique, but the manner of traversal for display
is unusual. Missing from Figure 2 (on the next page) is
the camera, an object not part of the scene graph. The
root of a scene graph (there is no restriction on having
a single scene graph in an application) is attached to a
camera when both are initialized. It is sometimes appro-
priate to include a camera in the scene graph, for exam-
ple, when mounting a camera in the nose of a missile
that must be transformed along with the missile.

The switch node is a general selection mechanism. It
includes a method for determining whether the view-
point is inside or outside a room and selects one or the
other subtree for traversal. The same mechanism with
a different method provides control of discrete levels of
detail or animation sequences.

The scene graph is an integrated data structure that
includes audio emitters, bounding volumes, transfor-
mations, and properties as well as displayable surfaces.
Audio and graphics rendering share a common traver-

IEEE Computer Graphics and Applications 3

DynamicsEvent_Handler

Level_ Data
Input

Audio Graphics

Game logic

Platform

1 Schematic of
a game.

sal of the scene graph. Other functions such as geo-
metric update and collision detection use local, partial
traversals.

Efficient display
Display operates in two phases. First, the game appli-

cation updates portions of the scene graph that have
changed for any reason using NeedUpdate(). For effi-
ciency this update is local to the scene graph’s changing
portions and does not require a global traversal. When
the application invokes this method for any given scene
graph node, geometric transformations are propagated
downward through the node’s descendants; bounding
volume updates, which are much quicker to execute, are
propagated upward.

The second phase of display is a “cull and show” tra-
versal of the scene graph. CullShow(), a method of
every scene graph node, operates as follows:

CullShow()
{

cull();
prepareDisplay();
draw();
undoPrepare();

}

We describe culling more fully in the next section. The
draw() function is bracketed by calls that push and pop
drawing state. While the API and function sequence are
common to all nodes, each component’s implementa-
tion is heavily tuned for the specific node type. This is a
perfect example of object-oriented methodology both
simplifying the programming interface and streamlining
execution.

Efficient display technology depends heavily on level-
of-detail management. Creating discrete levels of detail
(LOD) lies in the artist’s domain, and the LOD node, a
subclass of the switch node, makes displaying them sim-
ple. Intense research focuses on how to create and dis-
play multiresolution geometric models with continuous
level of detail.10 Such models incorporate information
and methods that permit them to adjust level of detail

autonomously in much the same
manner that the representation of
procedural models can be expanded
to an appropriate level of detail.
Rather than treat this subject gener-
ally, we discuss a specialized proce-
dural terrain model as an example.

Culling
As with almost any game engine,

aggressively culling entire subtrees
of the scene graph extracts the most
efficiency from the graphics
pipeline. Our engine maintains
bounding spheres at each hierarchy
level and updates them each time
the scene changes. During traversal
each sphere is tested against a list of
clipping planes to determine on
which side of the plane it lies. The

list can contain more or fewer than the customary six
boundaries of the view frustum.

The obvious advantage of hierarchical culling is that
traversal can bypass whole subtrees that lie outside the
view frustum. Less obvious is the potential performance
advantage of eliminating clipping planes from the cull
test as the traversal proceeds. For example, if a node’s
bounding sphere lies completely below the top clipping
plane and completely beyond the near clipping plane,
we need not test the bounding spheres of the node’s chil-
dren against these planes and can eliminate them from
any further test in that subtree. If a node’s bounding
sphere lies completely within the view frustum, then we
eliminate all clipping planes from the list and the over-
head of the cull test is nil.

While eliminating clipping planes from cull tests pro-
vides a welcome speedup, its real value results from the
low-level clipping operations for primitives in scene
graph leaf nodes. Clipping against only one or two rather
than six clipping planes provides a major performance
improvement in low-level geometric operations. Current
3D graphics accelerator hardware for PCs relegates this
part of the geometric processing to the host CPU; thus
this efficiency directly affects a game’s overall speed.

Dynamic collision detection
The bounding spheres for nodes in the scene graph

can be used for various purposes such as detecting col-
lisions between objects in the scene. We take advantage
of the scene graph’s hierarchical nature in computing
object intersections.

A simple hierarchical approach to determining two
objects’ intersections, each represented by a scene graph
subtree, follows. If the bounding spheres of the subtree’s
root nodes are disjoint, then the objects themselves do
not intersect. If the bounding spheres intersect, the
objects may or may not intersect. In this case, recursive
descents of the subtrees are made and the bounding
spheres of the children are compared for overlap. If at
some point in the traversal the bounding sphere tests
show that those portions containing one subtree’s geom-
etry are disjoint from the other subtree, then the objects

Computer Graphics in Entertainment

4 January/February 1998

The World

Switch (inside/outside)

Room

Terrain

Walls Furniture

Buildings

2 Scene graph.

do not intersect. Otherwise, each subtree has a leaf node
with geometry (that is, has vertices) for which the bound-
ing spheres overlap. While the actual polygons those leaf
nodes represent still might not intersect, the application
may assume that an intersection has occurred.

This simple algorithm is easy to implement but has a
few drawbacks. First, if the application needs to com-
pute collisions between N objects, the number of sub-
tree comparisons is of order N2. Second, if the geometry
at a leaf node is complex and the bounding sphere does
not accurately depict the represented object’s shape, the
application might need a more accurate intersection
test. Third, the intersection tests are static, that is, they
assume the objects have zero velocity. This is inadequate
for a 3D game. For example, the quantum bowling ball
in Figure 3 could pass through the wall without any col-
lision being detected by a static overlap test. We could
increase the sampling rate to lower the chance of this
happening, but the computational cost would be pro-
hibitive and it still might not work.

Our collision detection system avoids all three draw-
backs. Detection occurs in three phases. The first allows
the application to place objects in collision groups, each
a collection of objects whose intersection is relevant to
the game. A collider has a velocity (possibly zero); a col-
lidee has no motion. For example, a collision group
might consist of a bullet (a collider) and walls of a room
(collidees). A tree corresponding to each collision group
hierarchically orders the members based on axis-aligned
bounding boxes. Under most circumstances, if the col-
lision represents N objects, this tree allows N log (N)
comparisons for intersections (rather than N2 in the case
of naive pairwise comparisons).

If the first phase does not rule out intersections among
the members of a collision group, a second phase applies
the hierarchical bounding sphere intersection tests to
those pairs of objects that failed the first phase. If this
still shows that two or more objects might intersect, then
a third phase uses an extension of oriented bounding
boxes (OBB),11 which supports nonorthogonal orient-
ed bounding boxes with velocities. Oriented boxes
achieve a tighter fit than axis-aligned boxes on the geom-
etry and thereby (possibly) reduce the number of box-
box intersection tests.

Given a leaf node with geometry (represented as a list
of triangles), the engine builds an oriented bounding
box tree by analyzing the distribution of vertices at that
leaf node. At the top level, it fits the vertices with a 3D
non-circular Gaussian distribution. The engine uses the
mean of the distribution as the center of the box and the
eigenvectors of the covariance matrix for the box axes.
It determines the axis lengths by processing the list of
vertices and increasing each axis length as needed so
that the final oriented box contains all the vertices.

The engine then partitions vertices for the entire leaf
node into two sets based on the information obtained
about the OBB. Each subset is fit with a Gaussian distri-
bution and the corresponding OBBs are built. The algo-
rithm proceeds recursively until the OBB tree has leaf
nodes, each representing a triangle of the original scene
graph leaf node. Comparison of two OBB trees resem-
bles comparison of bounding spheres, but heuristically

the tighter fit on the geometry reduces the number of
comparisons.

Moreover, the game engine allows the application to
tune the system by specifying how many triangles
should be stored in the OBB tree leaf nodes. One trian-
gle per node gives more accurate intersection tests but
requires more comparisons between OBBs. More trian-
gles per node reduces the accuracy of the intersection
tests, but generally the tree comparisons take less time.
The engine also allows the application to specify how
far down the OBB tree the tests should occur.

The static OBB comparisons proceed quickly because
two boxes are tested for intersection by projection onto
various separating axes. Determining intersections
requires at most 15 axes,11 but on average very few are
needed to determine nonintersection. Surprisingly, the
dynamic OBB comparisons require little additional
work. Intervals represent the box projections on a sep-
arating axis. In the static case, two intervals are tested
for overlap; if no overlap occurs on a single separating
axis, the OBBs do not intersect. If overlap occurs on all
15 separating axes, the OBBs do intersect. In the dynam-
ic case, the intervals corresponding to the box projec-
tions themselves have velocities. Determining an
intersection of two moving OBBs means determining
that for some time between the frame’s start and end,
the moving intervals either overlap or pass through each
other for all 15 separating axes. The velocity of the OBBs
are used directly in determining such overlap.

One of our experiments added 10 concave objects
(each containing 24 vertices) as colliders to a collision
group. We added a room’s four walls, floor, and ceiling
as collidees. The engine called the collision detection sys-
tem during each frame processed for rendering (though
it could call it less frequently). The amount of time spent
processing the collision group approximately equaled
the time spent rendering the scene graph to the display.

Hierarchical sorting
Objects in a scene are typically sorted in order of dis-

tance from the viewpoint to eliminate visibility tests and
to enable transparency calculations. This by no means
represents the only useful sorting order, nor does an
entire scene need to be sorted using these criteria.

Traversing a tree-structured scene graph is straight-
forward unless we consider sorting. We can easily tra-

IEEE Computer Graphics and Applications 5

Position at T1

Position at T2

3 Collision
missed by static
overlap test.

verse a scene graph constructed as a binary separating
plane (BSP) tree in sorted order if the BSP tree is avail-
able. While it would be simpler to rely on z-buffered vis-
ibility tests and ignore traversal order, z-buffered
hardware is not universally available and z-buffering
has a significant memory footprint whether imple-
mented in hardware or software.

In addition to BSP trees for sorting during traversal,
our graphics processor also employs a deferred sort.
When the deferred sort is enabled, a volatile sorted dis-
play list is constructed internally as traversal progress-
es. The display list encapsulates all information needed
to render the object from which it is derived; otherwise,
sorted rendering and instancing would not coexist grace-
fully within the engine. As Figure 4 illustrates, this is a
hierarchical sort in which one element of a sorted list
may be another sorted list or an entire scene subgraph.

For flexibility and efficiency, hierarchical sorting is
enabled locally in the scene graph, that is, can be turned
on or off at any node in the scene. We could enable sort-
ing at the root and create a global sorted display list dur-
ing traversal, but this would not be efficient for large
scenes. A sorted list is flushed as soon as it and its descen-
dants are completed. Using the scene graph in Figure 2
as an example, we do not need to sort the entire interior
scene to resolve visibility if the walls form a simple box.
Drawing all walls first and then drawing a sorted list of
furniture suffices. Furthermore, we don’t need to grow

the sorted list with a hierarchy of fur-
niture pieces if a BSP tree embedded
in the scene graph describes each
item.

Sorts are unrestricted. A sort
method may obviously key on dis-
tance from the viewpoint, but a pro-
grammer may equally well sort
based on display properties. For
example, graph nodes may be sort-
ed on both opacity and depth such
that opaque objects are grouped but
not depth sorted among themselves
and transparent objects are grouped
and sorted back to front. This
method proves useful in efficiently

rendering objects with transparency.

Specialized drawable objects
Each scene management technique described above

is generic and works with a variety of shapes and scene
types. However, we can gain significant speed by con-
structing specialized objects whose drawing methods
take advantage of special cases. Two obvious examples
are indoor scenes, such as a collection of rooms joined
through portals, and outdoor scenes such as terrain.

Interiors and portals
Two pieces of data represent portals, like any other

scene graph object: the portal polygon itself, a convex
polygon in space; and the adjoiner, a piece of geometry
to be seen through the portal.12 Note that the adjoiner
is not a child of the portal in the scene graph sense. The
adjoiner attachment method resembles a camera’s scene
graph—no transformations are inherited.

Portals draw themselves by adding a clipping plane
to the camera for each edge of the portal polygon. These
planes are each defined by a portal polygon edge and
the camera center. Thus, each portal adds a new frus-
tum to the set of culling/clipping planes, as shown in
Figure 5. Having pushed the new clipping planes, the
portal draws its adjoiner and then removes the clipping
planes it added to the camera. Geometry in a portal’s
adjoiner is thus culled and clipped to the portal.

Portals are the enabling elements of a higher level
room-to-room system, represented at the top level by a
room group object. This is a scene graph node that rep-
resents an entire set of adjoining rooms and the portals
between them. The room group uses an undirected
graph structure, shown in Figure 6, in which the nodes
are rooms and the edges are windows and doorways
between them.

In this context, a room is a convex polyhedral space.
Each room has three object classes: (1) the walls and
(2) the portals, representing the shape of the convex
polyhedron itself, and (3) the fixtures, the room’s inte-
rior objects and furnishings. Each portal in a room ref-
erences another room, and a full set of rooms forms a
connected graph. We can create non-convex rooms by
joining together sets of convex rooms, fitting the seams
with a portal (or portals).

We draw a set of rooms as follows. First, we find the

Computer Graphics in Entertainment

6 January/February 1998

Sorted hierarchical
display list

Unsorted
scene graph

j j +1 j +2

i i +1 i +2

j +3
4 Hierarchical
sorting.

Original
view frustum

Portal WallWall

View frustum
for portal's

adjoiner

Object in
original view
frustum but

culled by
portal

5 Portal and
culled object.

room containing the camera using an application mes-
sage, full search of the room group, or an incremental
search starting from the last room known to contain the
camera. Once we locate this room, we create a depth-
first drawing of the room graph using the following (this
example is for back-to-front sorting, but front-to-back
sorting is done analogously). Starting with the room
containing the camera,

if the current room is being visited

return to calling room

else

mark the current room as being visited

disable all of the room’s incoming

portals

for each portal in the room

test the portal against the current

clipping planes

if the portal is visible

push the portal’s

clipping planes

and recursively draw the

room

endfor

draw the current room’s walls

(unsorted)

draw the current room’s fixtures

(sorted)

re-enable all of the room’s incoming

portals

mark the current room as not being

visited

return to calling room

All objects in the rooms are listed as being placed in
the room containing them, but this need not be the case.
If using z-buffering “write-only” as the room group is
drawn, then z-buffer testing can be turned on after all
the rooms are drawn, and objects physically in the
rooms can be drawn. This allows the application to avoid
keeping track of an object’s current room while still
achieving efficient drawing and correct visibility.

This system allows for correct back-to-front or front-
to-back sorting of a large set of interior rooms. It also
keeps the depth complexity of all drawn walls them-
selves very close to 1, an important consideration with
software rasterizers. Finally, only potentially visible
rooms are drawn (as the system visits rooms through
visibility portals and stops when a given room is culled
by any of the clipping planes pushed by other portals).

Exteriors and terrain
Because terrain can be represented so compactly as a

height field, we store terrain as a collection of pages, each
of which stores a 65 ×65 array of elevation values at the
densest resolution available. Since only a few pages, typ-
ically 30 or 40, are visible in any given frame, the cost of
storing the highest resolution data remains low.
Maintaining a triangle mesh data set, essential for accu-
racy in terrain display systems,13 would be impractical
in a game. Instead, the terrain object generates triangle
meshes at the appropriate level of detail on the fly as each
height field page is traversed in back-to-front order. This
turns out to be far more efficient than it sounds.

Depending on the camera’s position and direction of
view, the engine defines a major and minor direction of
scan for each cell, illustrated in Figure 7. As it scans the

IEEE Computer Graphics and Applications 7

Portal
Room wall

Room A

Room
B

Room
C Room E

Room D

Top view of simple interior geometry Portal connections for interior geometry

Room A Room D

Room ERoom CRoom B 6 Simple interi-
or geometry
and portal
connectivity.

Previous strip
Current vertex

Current strip

Major
direction

Minor direction

Splitting quad

Recursive "fill in" strip
Continuation of original
strip at finer LOD

Current strip

Merge quad

Minor direction

Major
direction

Minor direction

Major
direction

7 Sorted height
field traversal.

elevation grid along the minor direction, it uses the
level-of-detail measure to determine how many eleva-
tion values to skip over when choosing candidate trian-
gle vertices. The engine applies fixed rules for splitting
or merging meshes, shown on the right in Figure 7, at
points where the level of detail changes. The rules pro-
duce no cracks at a transition between levels of detail,
and frame-to-frame morphing of elevation values select-
ed for triangle vertices mitigates the annoying “popping”
artifact at a level of detail shift.

Figure 8a shows a line drawing of polygon boundaries
superimposed on the rendered terrain, indicating that
the terrain object maintains nearly constant screen space
area for each triangle. This is important for driving ras-
terizers that do not compute perspective-corrected tex-
ture map indices, but is less important for most hardware
rasterizers. Figure 8b illustrates the scene’s geometry
viewed from a different perspective (the original view-
point and view direction are indicated by the arrow). Only
a few pages (bold outlines) are visible in the frame; dis-
tant pages are triangulated with very few triangles, and
the dynamic range of object-space polygon sizes is large.

This terrain object, though by no means perfect, rep-
resents a tradeoff between accuracy and speed that is
appropriate for games. Furthermore, in keeping with
the game engine’s design goals, it scales very well across
a broad range of PC performance.

Results
Developers at GreyStone Technologies used

NetImmerse to create the PC version of Canyon Runner,
an arcade game. NetImmerse also forms the basis for
other titles currently in development. These develop-

ment efforts share a common thread: faster prototype
programming. The developers’ experience justifies our
goal of designing a high-level, object-oriented API for
fast, efficient game programming.

Figure 9 shows scenes rendered with generic compo-
nents only, without any specialized objects such as ter-
rain or portals. We can obtain 30-Hz frame rates on a
200-MHz Pentium Pro CPU with a 3Df/x Voodoo
Graphics accelerator card. This rate includes collision
detection, shown in Figure 9, left, where the spacecraft’s
proximity to the canyon wall triggers the translucent
force field surrounding the craft.

The efficiency of the specialized drawing objects is
lost if game developers cannot create the objects. An
important, often overlooked need is for modeling fea-
tures to be matched to runtime features. Game devel-
opers employ a filter to process content because most
games mix content from multiple sources and because
most modeling tools’ external data format does not nec-
essarily work as a game’s internal format. As procedur-
al geometry and specialized game elements become
more common, tuned modeling filters become even
more important parts of the game authoring process.

The engine users’ learning curve is as important as
runtime performance but proves much more difficult to
summarize quantitatively. Invariably, initial prototypes
are not optimized and require that developers bring
frame rates up to expected levels. In other words, the
engine does not magically apply the techniques
described in this article. Ironically, tuning in
NetImmerse requires considerable programmer atten-
tion because of the flexibility the system offers.
However, developers who learn and understand the

Computer Graphics in Entertainment

8 January/February 1998

8 (a) User’s
view of (b) the
active data set.

9 Two scenes
from Canyon
Runner by
GreyStone
Technologies.

G

re
yS

to
ne

 T
ec

hn
ol

og
y,

 In
c.

 1
99

7

engine’s scene management techniques can apply them
successfully within a few weeks (in some cases days)
and achieve the runtime performances needed to make
games visually exciting. ■

References
1. J. Rohlf and James Helman, “IRIS Performer: A High-Per-

formance Multiprocessing Toolkit for Real-Time 3D Graph-
ics,” Proc. Siggraph 94, ACM Press, New York, 1994, pp.
381-394.

2. Criterion Software Ltd., RenderWare Technical Specifica-
tion, http://www.csl.com/RenderWare/rwtech.htm.

3. Argonaut Technologies Ltd., BRender Technology Features,
http://www.argonaut.com/.

4. M. Abrash, Michael Abrash’s Graphics Programming Black
Book, Special Edition, The Coriolis Group, Scottsdale, Ariz.,
1997.

5. Intel Corp., Accelerated Graphics Port Interface Specifica-
tion, http://developer.intel.com/pc-supp/platform/
agfxport/.

6. A. Ames et al., VRML 2.0 Sourcebook, John Wiley and Sons,
New York, 1997.

7. Olivier Montanuy, Unofficial Quake-C Specification,
http://www.gamers.org/dEngine/quake/spec/
quake-spec34/index1.htm.

8. M. Shantz, “Building Online Virtual Worlds,” Proc. Graph-
icon 96, Grafo Computer Graphics Society, St. Petersburg,
Russia, Vol. 2, July 1996, pp. 12-17.

9. Numerical Design Ltd., NetImmerse Programmers Manual,
http://www.ndl.com.

10. M. Eck et al., “Multiresolution Analysis of Arbitrary Mesh-
es,” Proc. Siggraph 95, ACM Press, New York, 1995, pp. 173-
182.

11. S. Gottschalk, M. Lin, and D. Manocha, “OBBTree: A Hier-
archical Structure for Rapid Interference Detection,” Proc.
Siggraph 96, ACM Press, New York, 1996, pp. 171-180.

12. S.J. Teller and C.H. Séquin, “Visibility Preprocessing For
Interactive Walkthroughs,” Proc. Siggraph 91, ACM Press,
New York, 1991, pp. 61-69.

13. P. Lindstrom et al., “Real-Time Continuous Level of Detail
Rendering of Height Fields,” Proc. Siggraph 96, ACM Press,
New York, 1996, pp. 109-118.

Lars M. Bishop is a technical staff
member at Numerical Design Limit-
ed, where his interests include con-
sumer-level real-time 3D graphics.
He received a BS in mathematics and
computer science from Brown Uni-
versity and an MS in computer sci-

ence from the University of North Carolina at Chapel Hill.

Dave Eberly is the director of engi-
neering at Numerical Design Limit-
ed. His technical interests include
real-time 3D computer graphics and
computational differential geome-
try. He received a BA in mathemat-
ics from Bloomsburg University, an

MS and PhD in mathematics from the University of Col-
orado, and MS and PhD degrees in computer science from
the University of North Carolina.

Mark Finch received a BS in
physics from Georgia Institute of
Technology and an MS in computer
science from the University of North
Carolina at Chapel Hill. He is cur-
rently with HeadSpin Technology,
where he focuses on 3D ambients for

autonomous environments.

Michael Shantz is a principal
engineer in Intel’s Microcomputer
Research Laboratory. He received an
MS in biomedical engineering from
Drexel University and a PhD in infor-
mation science from the California
Institute of Technology in 1976. His

research interests include computer graphics, scene man-
agement architectures, articulated body dynamics, mod-
eling autonomous interacting behaviors, and genetic
programming.

Turner Whitted recently joined
Microsoft as a senior researcher. He
has been a research professor of com-
puter science at the University of
North Carolina at Chapel Hill for the
past 14 years as well as a cofounder
and director of Numerical Design

Limited. Prior to that he was a technical staff member in
Bell Labs’ computer systems research laboratory. He
earned BSE and MS degrees in electrical engineering from
Duke University and a PhD from North Carolina State Uni-
versity. He is an editorial board member of IEEE Computer
Graphics and Applications, was papers chair for Siggraph
97, and is an ACM Fellow.

Contact Bishop at Numerical Design Limited, 1506 E.
Franklin St., Suite 302, Chapel Hill, NC 27514,
lmb@ndl.com.

IEEE Computer Graphics and Applications 9

